Need help find the limit of limn→∞∑nk=1√kn32
Now my intuition is that using Stolz-Cesaro
limn→∞∑nk=1√kn32=limn→∞1n∑nk=1√kn=1
Is it correct or not?
Answer
how about using Riemann sums??
limn→∞n∑k=1√kn3/2=limn→∞1nn∑k=1√kn=∫10√xdx
How to find limh→0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment