How to prove that
∞∑n=0x5n(5n)!=25e−cos(1/5π)xcos(sin(1/5π)x)+25ecos(2/5π)xcos(sin(2/5π)x)+15ex?
Answer
Hint. Clearly
155∑j=1eωjx=∞∑n=0x5n(5n)!
where ω=e2πi/5, since
5∑j=1ωjn={5if5∣n,0if5∤
But
\omega=\cos (2\pi/5)+i\sin (2\pi/5), \,\,\omega^2=\cos (4\pi/5)+i\sin (4\pi/5), \,\,\omega^3=\overline{\omega^2},\,\,\omega^4=\overline{\omega},
and so
\sum_{n=0}^\infty\frac{x^{5n}}{(5n)!}=\frac{1}{5}\sum_{j=1}^5\mathrm{e}^{\omega^j x}=\frac{1}{5}\left(\mathrm{e}^x+2\mathrm{e}^{x\cos(2\pi/5)}\cos\big(\sin(2\pi/5)\big)+2\mathrm{e}^{x\cos(4\pi/5)}\cos\big(\sin(4\pi/5)\big)\right).
No comments:
Post a Comment