Friday, 19 December 2014

Functional equation with three variables

I have a functional equation with three variables. $f(x,y,z)$ is a real function with three variables where y is different from z i.e., $f(x,y,z)$ defined only for $y \neq z$. This function satisfies




  1. $f(x,x,y)=0$

  2. $f(x,y,x)=1$

  3. $f(x,y,z)f(z,y,r)=f(x,y,r)$



What is the general solution for $f$?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...