Thursday, 25 December 2014

sequences and series - How do I find the sum of $sumlimits_{k=1}^infty{frac{k}{2^{k+1}}}=1$?




As shown in the title, how do I find the sum of:




$$\sum\limits_{k=1}^\infty{\frac{k}{2^{k+1}}}=1$$


Answer



HINT:



Note that for $|x|<1$, $f(x)=\sum_{k=1}^{\infty}x^{k}=\frac{x}{1-x}$ implies that



$$x^2f'(x) = \sum_{k=1}^{\infty}kx^{k+1}$$



Then, let $x=1/2$



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...