Let f:(0,π)→R defined by x↦cosx
Show that the Fourier sine series of (odd extension) is given by
∞∑n=22n(1+(−1)n)π(n2−1)
So far, because it's an odd series, I used bn=2π∫π0cosxsinnxdx
bn=2π∫π0cosxsinnxdx=2π∫π0sinx′sinnxdx=2π[−sinxsinnx]π0+n∫π0sinxcosnxdx=2π[−sinxsinnx]π0+n∫π0−cosx′cosnxdx
but now I'm thinking I've gone down the wrong path.
No comments:
Post a Comment