Wednesday, 24 December 2014

ordinary differential equations - Fourier sine series of $f = cos x$

Let $f:(0,\pi) \to \mathbb{R}$ defined by $x \mapsto \cos x $



Show that the Fourier sine series of (odd extension) is given by




$$\sum\limits_{n=2}^\infty \frac{2n(1+(-1)^n)}{\pi(n^2-1)}$$






So far, because it's an odd series, I used $\displaystyle b_n =\frac{2}{\pi}\int^\pi_0 \cos x \sin nx dx$



$$\begin{align} b_n &= \frac{2}{\pi}\int^\pi_0 \cos x \sin nx dx \\
&=\frac{2}{\pi}\int^\pi_0\sin x ' \sin nx dx \\
&= \frac{2}{\pi}{[-\sin x \sin nx ]^\pi_0+n\int^\pi_0 \sin x \cos nx dx} \\

&=\frac{2}{\pi}{[-\sin x \sin nx]^\pi_0+n\int^\pi_0-\cos x ' \cos nx dx}
\end{align}$$



but now I'm thinking I've gone down the wrong path.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...