Let $f:(0,\pi) \to \mathbb{R}$ defined by $x \mapsto \cos x $
Show that the Fourier sine series of (odd extension) is given by
$$\sum\limits_{n=2}^\infty \frac{2n(1+(-1)^n)}{\pi(n^2-1)}$$
So far, because it's an odd series, I used $\displaystyle b_n =\frac{2}{\pi}\int^\pi_0 \cos x \sin nx dx$
$$\begin{align} b_n &= \frac{2}{\pi}\int^\pi_0 \cos x \sin nx dx \\
&=\frac{2}{\pi}\int^\pi_0\sin x ' \sin nx dx \\
&= \frac{2}{\pi}{[-\sin x \sin nx ]^\pi_0+n\int^\pi_0 \sin x \cos nx dx} \\
&=\frac{2}{\pi}{[-\sin x \sin nx]^\pi_0+n\int^\pi_0-\cos x ' \cos nx dx}
\end{align}$$
but now I'm thinking I've gone down the wrong path.
No comments:
Post a Comment