Wednesday, 24 December 2014

ordinary differential equations - Fourier sine series of f=cosx

Let f:(0,π)R defined by xcosx



Show that the Fourier sine series of (odd extension) is given by




n=22n(1+(1)n)π(n21)






So far, because it's an odd series, I used bn=2ππ0cosxsinnxdx



bn=2ππ0cosxsinnxdx=2ππ0sinxsinnxdx=2π[sinxsinnx]π0+nπ0sinxcosnxdx=2π[sinxsinnx]π0+nπ0cosxcosnxdx



but now I'm thinking I've gone down the wrong path.

No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...