Friday, 26 December 2014

lp spaces - Proof of infinity matrix norm

Given the l matrix norm for ARmxn is defined as: (where a^{i} is the i^{th}) row in matrix A),



Show that:
\|A\|_{\infty} =\max \left\{\|Ax\|_{\infty} : x_{\infty} \le 1\right\} =\max \left\{\|Ax\|_{\infty} : x_{\infty} = 1\right\}



I know that this is a property of subordinate matrix norms but I'm not sure how to go about with proving it.

No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...