Friday, 26 December 2014

lp spaces - Proof of infinity matrix norm

Given the $l_{\infty}$ matrix norm for $A{\in}{\Bbb{R}}^{mxn}$ is defined as: $\|A\|_{\infty} =\max_{1 \leq i \leq n}\|a^{i}\|_{1}$ (where $a^{i}$ is the i$^{th}$) row in matrix A),



Show that:
$\|A\|_{\infty} =\max \left\{\|Ax\|_{\infty} : x_{\infty} \le 1\right\} =\max \left\{\|Ax\|_{\infty} : x_{\infty} = 1\right\}$



I know that this is a property of subordinate matrix norms but I'm not sure how to go about with proving it.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...