Tuesday, 9 December 2014

exponentiation - Calculate, simplify and expand exponents with complex numbers

Can we somehow calculate $a^z$ where z is a complex number ?



Does normal exponent rules like :



$$a^b\cdot a^c=a^{b+c}$$




Still work when complex numbers are in the exponent ? For example, do these egalities are true ?



$$2^{4+2i}+2^{3+4i} = 2^{7+6i}$$
$$(2^{4+2i})^{3+4i}=4^{(4+2i)\:\cdot \:(3+4i)}$$

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...