Can we somehow calculate $a^z$ where z is a complex number ?
Does normal exponent rules like :
$$a^b\cdot a^c=a^{b+c}$$
Still work when complex numbers are in the exponent ? For example, do these egalities are true ?
$$2^{4+2i}+2^{3+4i} = 2^{7+6i}$$
$$(2^{4+2i})^{3+4i}=4^{(4+2i)\:\cdot \:(3+4i)}$$
No comments:
Post a Comment