Wednesday, 31 December 2014

limits - Find $limlimits_{nto+infty}frac{sqrt[n]{n!}}{n}$




I tried using Stirling's approximation and d'Alambert's ratio test but can't get the limit. Could someone show how to evaluate this limit?



Answer



Use equivalents:
$$\frac{\sqrt[n]{n!}}n\sim_{\infty}\frac{\bigl(\sqrt{2\pi n}\bigr)^{\tfrac 1n}}{n}\cdot\frac n{\mathrm{e}}=\frac 1{\mathrm{e}}\bigl({2\pi n}\bigr)^{\tfrac 1{2n}}$$
Now $\;\ln\bigl({2\pi n}\bigr)^{\tfrac 1{2n}}=\dfrac{\ln\pi+\ln 2n}{2n}\xrightarrow[n\to\infty]{}0$, hence
$$\frac{\sqrt[n]{n!}}n\sim_{\infty}\frac 1{\mathrm{e}}. $$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...