Wednesday, 17 December 2014

calculus - A sine integral intinfty0left(fracsinxxright)n,mathrmdx




The following question comes from Some integral with sine post
0(sinxx)ndx
but now I'd be curious to know how to deal with it by methods of complex analysis.
Some suggestions, hints? Thanks!!!



Sis.


Answer



Here's another approach.



We have

\begin{eqnarray*} \int_0^\infty dx\, \left(\frac{\sin x}{x}\right)^n &=& \lim_{\epsilon\to 0^+} \frac{1}{2} \int_{-\infty}^\infty dx\, \left(\frac{\sin x}{x-i\epsilon}\right)^n \\ &=& \lim_{\epsilon\to 0^+} \frac{1}{2} \int_{-\infty}^\infty dx\, \frac{1}{(x-i\epsilon)^n} \left(\frac{e^{i x}-e^{-i x}}{2i}\right)^n \\ &=& \lim_{\epsilon\to 0^+} \frac{1}{2} \frac{1}{(2i)^n} \int_{-\infty}^\infty dx\, \frac{1}{(x-i\epsilon)^n} \sum_{k=0}^n (-1)^k {n \choose k} e^{i x(n-2k)} \\ &=& \lim_{\epsilon\to 0^+} \frac{1}{2} \frac{1}{(2i)^n} \sum_{k=0}^n (-1)^k {n \choose k} \int_{-\infty}^\infty dx\, \frac{e^{i x(n-2k)}}{(x-i\epsilon)^n}. \end{eqnarray*}
If n-2k \ge 0 we close the contour in the upper half-plane and pick up the residue at x=i\epsilon.
Otherwise we close the contour in the lower half-plane and pick up no residues.

The upper limit of the sum is thus \lfloor n/2\rfloor.
Therefore, using the Cauchy differentiation formula, we find
\begin{eqnarray*} \int_0^\infty dx\, \left(\frac{\sin x}{x}\right)^n &=& \frac{1}{2} \frac{1}{(2i)^n} \sum_{k=0}^{\lfloor n/2\rfloor} (-1)^k {n \choose k} \frac{2\pi i}{(n-1)!} \left.\frac{d^{n-1}}{d x^{n-1}} e^{i x(n-2k)}\right|_{x=0} \\ &=& \frac{1}{2} \frac{1}{(2i)^n} \sum_{k=0}^{\lfloor n/2\rfloor} (-1)^k {n \choose k} \frac{2\pi i}{(n-1)!} (i(n-2k))^{n-1} \\ &=& \frac{\pi}{2^n (n-1)!} \sum_{k=0}^{\lfloor n/2\rfloor} (-1)^k {n \choose k} (n-2k)^{n-1}. \end{eqnarray*}
The sum can be written in terms of the hypergeometric function but the result is not particularly enlightening.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...