Saturday, 13 December 2014

limit of $log(x)^{(k+1)}/x$

$$ \lim_{x\to \infty} \left(\frac{\log^{k+1}(x)}{x}\right) = \lim_{x\to \infty} \left(\frac{\frac{(k+1)\log^{k}(x)}{x}}{1}\right) = \lim_{x\to \infty} \left(\frac{(k+1)(k)\log^{k-1}(x)}{x}\right) = \lim_{x\to \infty} \left(\frac{(k+1)!}{x}\right) \Rightarrow 0$$



I used L'Hospital to get to $$\lim_{x\to \infty} \left(\frac{(k+1)(k)\log^{k-1}(x)}{x}\right)$$



But from there I don't understand how to get $$ \lim_{x\to \infty} \left(\frac{(k+1)!}{x}\right) $$



Any help would be appreciated, thanks in advance.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...