Tuesday, 30 December 2014

complex numbers - Find the real and imaginary parts

Find the real and imaginary parts of : $$ \frac {e^{iθ}} {1-λe^{iΦ}} $$




Here i=iota



I have used $ e^{iθ} = \cos θ +i \sin θ $ but I am not able to separate real and imaginary parts. I am not getting any clue how to proceed.



The answer given in my textbook:
Real: $ \frac {cos θ - λ cos(θ-Φ)} {1-2λ cos Φ + λ^2} $



Imaginary: $ \frac {sin θ - λ sin(θ-Φ)} {1-2λ cos Φ + λ^2} $



Thank you

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...