Find the real and imaginary parts of : $$ \frac {e^{iθ}} {1-λe^{iΦ}} $$
Here i=iota
I have used $ e^{iθ} = \cos θ +i \sin θ $ but I am not able to separate real and imaginary parts. I am not getting any clue how to proceed.
The answer given in my textbook:
Real: $ \frac {cos θ - λ cos(θ-Φ)} {1-2λ cos Φ + λ^2} $
Imaginary: $ \frac {sin θ - λ sin(θ-Φ)} {1-2λ cos Φ + λ^2} $
Thank you
No comments:
Post a Comment