On the wikipedia's article about integration using Euler's formula
they use ∫sin2xcos4xdx as an example:
∫sin2xcos4xdx
∫(eix−e−ix2i)2(e4ix+e−4ix2)dx
−18∫e6ix+e−6ix−2e4ix−2e−4ix+e2ix+e−2ixdx
And then it says that we can either integrate as it is or substitute the integrand with cos6x−2cos4x+cos2x, shouldn't that be 2cos6x−4cos4x+2cos2x? Is wikipedia wrong or what am I not understanding?
Answer
Rewrite the integral as
−18∫(e6ix+e−6ix−2e4ix−2e−4ix+e2ix+e−2ix)dx=−∫(14⋅e6ix+e−6ix2−24⋅e4ix+e−4ix2+14⋅e2ix+e−2ix2)dx=−∫(14cos6x−12cos4x+14cos2x)dx=−14∫(cos6x−2cos4x+cos2x)dx
but
−∫(14cos6x−12cos4x+14cos2x)dx=−18∫(2cos6x−4cos4x+2cos2x)dx.
I think you are right.
No comments:
Post a Comment