Sunday, 21 December 2014

calculus - Show that the function $g(x) = x^2 sin(frac{1}{x}) ,(g(0) = 0)$ is everywhere differentiable and that $g′(0) = 0$


Show that the function $g(x) = x^2 \sin\left(\frac{1}{x}\right) ,(g(0) = 0)$ is everywhere differentiable and that $g′(0) = 0$.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...