Saturday 27 December 2014

radicals - Calculating the following limit: $lim_{x to 0} frac{sqrt{x^2+1}-sqrt{x+1}}{1-sqrt{x+1}} $



I am trying to calculate this limit:

$$
\lim_{x \to 0} \frac{\sqrt{x^2+1}-\sqrt{x+1}}{1-\sqrt{x+1}}
$$



I've tried using conjugate of both denominator and numerator but I can't get the right result.


Answer



$$\frac{\sqrt{x^2+1}-\sqrt{x+1}}{1-\sqrt{x+1}}$$
$$=\frac{(1+\sqrt{x+1})\{x^2+1-(x+1)\}}{(\sqrt{x^2+1}+\sqrt{x+1})(1-(x+1))}$$
$$=\frac{(1+\sqrt{x+1})\{x(x-1)\}}{(\sqrt{x^2+1}+\sqrt{x+1})(-x)}$$
$$=\frac{(1+\sqrt{x+1})(1-x)}{(\sqrt{x^2+1}+\sqrt{x+1})}\text { if } x\ne0$$




As $x\to0,x\ne0$



So, $$\lim_{x\to0}\frac{\sqrt{x^2+1}-\sqrt{x+1}}{1-\sqrt{x+1}}=\lim_{x\to0}\frac{(1+\sqrt{x+1})(1-x)}{(\sqrt{x^2+1}+\sqrt{x+1})}=\frac{(1+1)}{(1+1)}=1$$






Alternatively, as $\lim_{x\to0}\frac{\sqrt{x^2+1}-\sqrt{x+1}}{1-\sqrt{x+1}}$ is of the form $\frac00,$



Applying L'Hospital's Rule we get,

$$\lim_{x\to0}\frac{\sqrt{x^2+1}-\sqrt{x+1}}{1-\sqrt{x+1}}$$
$$=\lim_{x\to0}\frac{\frac x{\sqrt{x^2+1}}-\frac1{2\sqrt{x+1}}}{-\frac1{2\sqrt{x+1}}}$$
$$=\lim_{x\to0}\left(1-\frac{2x\sqrt{x+1}}{\sqrt{x^2+1}}\right)\text{ as }x+1\ne0$$
$$=1$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...