Tuesday, 3 February 2015

real analysis - Does $x_n$ converge where $x_{n+1}=-16+ 6x_n+frac{12}{x_n}$



Define $x_{n+1}=-16+ 6x_n+\frac{12}{x_n} \hspace{0.2cm} \forall n\in \mathbb{N}$ where $x_1\neq 2$. I need to find whether it diverges or converges?




I tried proving $\{x_n\}$ is increasing/ decreasing and bounded, but nothing really worked. I guess that it should diverge!

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...