Friday, 3 July 2015

calculus - Evaluating $intsin^3t , dt$




I have this integral:



$$\int\sin^3t \, dt$$



I have tried partial integration with $\sin t \cdot \sin^2t$, but then I get another integral to evaluate which needs partial integration:



$$\dots \int \cos^2t \cdot \sin t \, dt \dots$$



Which gives me another integral that needs partial integration and so on. I get stuck in a partial integration loop.




How should I evaluate this?


Answer



$$\int \sin^{3}(t)dt=\int \sin(t)(1-\cos^{2}(t))dt$$
$$=\int \sin(t)dt-\int \sin(t)\cos^{2}(t)dt$$
$$=-\cos(t)-\int \sin(t)\cos^{2}(t)dt$$



Try $u=\cos(t)$ so that $du=-\sin(t)dt$ and the second integral is equivalent to



$-\int u^{2}du=-\frac{1}{3}u^{3}=-\frac{1}{3}\cos^{3}(t)$




Which gives us a final answer of



$$\int \sin^{3}(t)dt=-\cos(t)+\frac{1}{3}\cos^{3}(t)+C$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...