Wednesday, 1 July 2015

linear algebra - Proof about diagonal matrices

Suppose that $A\in M_{n\times n}(\mathbb{R})$ such that their eigenvalues are $\{\lambda_1,\cdots, \lambda_n\}$, i.e. $\sigma(A)=\{\lambda_1,\cdots,\lambda_n\}$, then if the geometric multiplicity $mg_A(\lambda_i)$ is the same arithmetic multiplicity $ma_A(\lambda)$, we have that $A$ can be diagonal

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...