Prove that $$\left(1+\frac{1}{n}\right)^n<\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+...+\frac{1}{n!}$$ for $n>1 , n \in \mathbb{N}$.
Answer
We have by the binomial identity that
\begin{align*}
\left(1 + \frac 1n \right)^n &= \sum_{k=0}^n \binom nk \frac 1{n^k}\\
&= \sum_{k=0}^n \frac{n!}{(n-k)! n^k} \cdot \frac 1{k!}\\
&= \sum_{k=0}^n \frac{n \cdot (n-1) \cdots (n-k+1)}{n \cdot n \cdots n} \cdot \frac 1{k!}\\
&\text{now the first factor is $<1$ for $k\ge 2$}\\
&< \sum_{k=0}^n \frac 1{k!}
\end{align*}
for $n \ge 2$.
No comments:
Post a Comment