Saturday, 4 July 2015

summation - A binomial inequality with factorial fractions: $left(1+frac{1}{n}right)^n



Prove that (1+1n)n<10!+11!+12!+...+1n!

for n>1,nN.



Answer



We have by the binomial identity that
(1+1n)n=nk=0(nk)1nk=nk=0n!(nk)!nk1k!=nk=0n(n1)(nk+1)nnn1k!now the first factor is <1 for k2<nk=01k!


for n2.



No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find limh0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...