Friday, 11 December 2015

real analysis - Proving that limntoinfty(intbaf(x)ndx)1/n=maxxin[a,b]f(x)




I'm trying to prove the following statement:




lim



where [a,b] \subset \mathbb{R} and f is non-negative and continuous.



I've tried to prove it in a similar way that we prove that \displaystyle\lim_{n\to\infty}(a^n+b^n)^{1/n} = b if b>a.



However, I'm stuck in the end with an iterated limit of the form \displaystyle\lim_{n\to\infty} \lim_{\epsilon\to 0 } \left(\epsilon^{1/n}\max_{x\in [a,b]}f(x)\right).



Is this last expression equal to \displaystyle\max_{x\in [a,b]}f(x)? If not, could anyone please give me a hint as to how to go about this proof?


Answer




Here is it, an elementary proof. Let M=\max \{f(x): x\in [a,b]\}. Since f is non negative then M>0. For n\geq 1, define u_n= \left(\int_{a}^{b} f(x)^n dx \right)^{1/n}. By monotony of the integral we have
u_n\leq \left(\int_{a}^{b} M^n dx \right)^{1/n}= M(b-a)^{1/n}.
Let c\in [a,b] such that f(c)=M. Then by continuity of f, for any \epsilon \in (0,2M)\; \exists [s,t]\subset [a,b] ([s,t] is a neighborhood of c) such that for all x\in [s,t] we have f(x)\geq M-{\epsilon \over 2}.



Hence for any n\geq 1



u_n \geq \left(\int_{s}^{t} f(x)^n dx \right)^{1/n}\geq \left(\int_{s}^{t}\left( M-{ \epsilon \over 2 }\right)^n dx \right)^{1/n}= (M-{\epsilon \over 2})(t-s)^{1/n}.



Thus we can say that \forall \epsilon \in (0,2M) \, \exists [s,t]\subset [a,b] \,\text{ s.t }\, \forall n\geq 1\; (M-{\epsilon \over 2})(t-s)^{1/n}\leq u_n\leq M(b-a)^{1/n}.




On the other hand \lim_{n\to \infty} M(b-a)^{1/n}= M and \lim_{n\to \infty } (M-{\epsilon \over 2})(t-s)^{1/n}=M-{\epsilon \over 2}, so



$\exists n_1 \geq 1, \forall n\geq n_1, \; M(b-a)^{1/n} and \exists n_n \geq 1, \forall n\geq n_n, \; (M-{\epsilon \over 2})(t-s)^{1/n}>M-\epsilon.



Let n_0=\max\{n_1,n_2\}. For n\geq n_0, $M-\epsilon, and thus we have shown that
\forall \epsilon >0 , \;\exists n_0\geq 1,\; \forall n\geq n_0,\; |u_n-M|<\epsilon.



Thus \lim_{n\to \infty} u_n=M.


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...