Saturday, 12 December 2015

summation - How to find a general sum formula for the series: 5+55+555+5555+.....?



I have a question about finding the sum formula of n-th terms.



Here's the series:



$5+55+555+5555$+......



What is the general formula to find the sum of n-th terms?




My attempts:



I think I need to separate 5 from this series such that:



$5(1+11+111+1111+....)$



Then, I think I need to make the statement in the parentheses into a easier sum:



$5(1+(10+1)+(100+10+1)+(1000+100+10+1)+.....)$




= $5(1*n+10*(n-1)+100*(n-2)+1000*(n-3)+....)$



Until the last statement, I don't know how to go further. Is there any ideas to find the general solution from this series?



Thanks


Answer



$$5+55+555+5555+\cdots+\overbrace{55\dots5}^{n\text{ fives}}$$
$$=\frac59(9+99+999+9999+\cdots+\overbrace{99\dots9}^{n\text{ nines}})$$
$$=\frac59(10^1-1+10^2-1+10^3-1+\cdots+10^n-1)$$

$$=\frac59(10^1+10^2+10^3+\cdots+10^n-n)$$
$$=\frac59\left(\frac{10^{n+1}-10}{9}-n\right).$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...