Wednesday, 16 March 2016

calculus - Evaluate $int_{0}^{+infty }{left( frac{x}{{{text{e}}^{x}}-{{text{e}}^{-x}}}-frac{1}{2} right)frac{1}{{{x}^{2}}}text{d}x}$



Evaluate :
$$\int_{0}^{+\infty }{\left( \frac{x}{{{\text{e}}^{x}}-{{\text{e}}^{-x}}}-\frac{1}{2} \right)\frac{1}{{{x}^{2}}}\text{d}x}$$



Answer



Related technique. Here is a closed form solution of the integral



$$\int_{0}^{+\infty }{\left( \frac{x}{{{\text{e}}^{x}}-{{\text{e}}^{-x}}}-\frac{1}{2} \right)\frac{1}{{{x}^{2}}}\text{d}x} = -\frac{\ln(2)}{2}. $$



Here is the technique, consider the integral



$$ F(s) = \int_{0}^{+\infty }{e^{-sx}\left( \frac{x}{{{\text{e}}^{x}}-{{\text{e}}^{-x}}}-\frac{1}{2} \right)\frac{1}{{{x}^{2}}}\text{d}x}, $$



which implies




$$ F''(s) = \int_{0}^{+\infty }{e^{-sx}\left( \frac{x}{{{\text{e}}^{x}}-{{\text{e}}^{-x}}}-\frac{1}{2} \right)\text{d}x}. $$



The last integral is the Laplace transform of the function



$$ \frac{x}{{{\text{e}}^{x}}-{{\text{e}}^{-x}}}-\frac{1}{2} $$



and equals



$$ F''(s) = \frac{1}{4}\,\psi' \left( \frac{1}{2}+\frac{1}{2}\,s \right) -\frac{1}{2s}. $$




Now, you need to integrate the last equation twice and determine the two constants of integrations, then take the limit as $s\to 0$ to get the result.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...