Monday, 28 March 2016

number theory - Simplifying Linear Congruences

I want to solve the given linear congruence



$$ 5x+1\equiv 2 \mod 6 $$




My Approach:



\begin{align}&\Rightarrow& 5x -1&\equiv 0\mod 6 \\
&\Rightarrow& 6x -x-1&\equiv 0\mod6 \tag{ as $6\equiv 0\mod6$}\\
&\Rightarrow& 0 -x-1&\equiv 0\mod6 \\

&\Rightarrow& x&\equiv -1\mod 6 \end{align}




Am I correct till now ?? If I am correct, how to proceed further?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...