Wednesday, 16 March 2016

real analysis - Show that e1nleqfracn!nn



How can I show that for a nN



e1nn!nn



I tried using the binomial theorem like this




n^n \le (1+n)^n = \sum_{k=0}^n \binom nk n^k \le \sum_{k=0}^\infty \binom nk n^k = \sum_{k=0}^\infty \frac{n!}{k!(n-k)!} n^k \le \sum_{k=0}^\infty \frac{n!}{k!} n^k = n! \sum_{k=0}^\infty \frac{n^k}{k!} = n! \cdot e^n



which would give me



\frac{1}{e^n} \le \frac{n!}{n^n}



But I'm missing the factor of e on the left side. Can you give me a hint?


Answer



Using induction we see that for n=1, the inequality holds. Assume that it holds for some number k.




Then, using $\left(1+\frac1k\right)^k

\begin{align} \frac{(k+1)!}{(k+1)^{k+1}}&=\frac{k!}{k^k\left(1+\frac1k\right)^k}\\\\ &\ge \frac{e^{1-k}}{e}\\\\ &=e^{1-(k+1)} \end{align}



And we are done!



No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...