Wednesday, 16 March 2016

real analysis - Show that $e^{1-n} leq frac {n!}{n^n}$



How can I show that for a $n \in \mathbb N$



$$e^{1-n} \leq \frac {n!}{n^n}$$



I tried using the binomial theorem like this




$$n^n \le (1+n)^n = \sum_{k=0}^n \binom nk n^k \le \sum_{k=0}^\infty \binom nk n^k = \sum_{k=0}^\infty \frac{n!}{k!(n-k)!} n^k \le \sum_{k=0}^\infty \frac{n!}{k!} n^k = n! \sum_{k=0}^\infty \frac{n^k}{k!} = n! \cdot e^n$$



which would give me



$$\frac{1}{e^n} \le \frac{n!}{n^n}$$



But I'm missing the factor of $e$ on the left side. Can you give me a hint?


Answer



Using induction we see that for $n=1$, the inequality holds. Assume that it holds for some number $k$.




Then, using $\left(1+\frac1k\right)^k

$$\begin{align}
\frac{(k+1)!}{(k+1)^{k+1}}&=\frac{k!}{k^k\left(1+\frac1k\right)^k}\\\\
&\ge \frac{e^{1-k}}{e}\\\\
&=e^{1-(k+1)}
\end{align}$$



And we are done!



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...