Saturday, 19 March 2016

calculus - The limit of general term in a series

I have the following statement -



If $\sum_{1}^{\infty} a_{n}^2$ converge then $\sum_{1}^{\infty} a_{n}^3$ converge.



Well i know this statement is true , but if can someone explain why



$\lim_{n\rightarrow\infty}(a_{n}^2) = 0$ implies that $\lim_{n\rightarrow\infty}(a_{n}) = 0$




(a fact that help to prove this statement) , Thanks!

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...