Tuesday, 29 March 2016

Prove this binomial sum by induction

Can someone help me with this one?
Prove by mathematical induction



For n1
\displaystyle{\sum^n_ {k=0} k^n\binom{n}{k}(-1)^k= (-1)^nn!}




It's easy to see that for n=1
\displaystyle{0^1\binom{1}{0}(-1)^0+1^1\binom{1}{1}(-1)^1= -1} and \displaystyle{(-1)^11!=-1}



My problem is how to use the induction hypothesis
I'm trying to solve it this way:



Perhaps I just have to add this to my sum:
{\sum_{k={n+1}}^{n+1}} (n+1)^{n+1}\binom {n+1}{n+1}(-1)^{n+1}
And get:
\displaystyle{\sum^n_ {k=0} \biggl[k^n\binom{n}{k}(-1)^k}\biggr]+(n+1)^{n+1}\binom {n+1}{n+1}(-1)^{n+1}

And as:
\displaystyle{\sum^n_ {k=0} k^n\binom{n}{k}(-1)^k= (-1)^nn!}
Then i get:
\displaystyle{(-1)^nn!+(n+1)^{n+1}(-1)^{n+1}}
I tried this:
\left(-1\right)^{n}\,n!+\left(-n-1\right)\,\left(n+1\right)^{n}\, \left(-1\right)^{n}
And this:
\left(-1\right)^{n}\,\left(n!-n\,\left(n+1\right)^{n}-\left(n+1 \right)^{n}\right)

But i can't figure out how to get to this:
\displaystyle{ (-1)^{n+1}(n+1)!}

No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...