Monday, 14 March 2016

real analysis - Sum of $ 1+frac{1}{4}+frac{1}{9}+frac{1}{16}+.....$

I know that the series b. converges as $\sum \frac{1}{n^p}$ converges for $p>1$, So a. also converges. I want to know the sum.





a.$1+\frac{1}{9}+\frac{1}{25}+\frac{1}{49}+.....$




$b.1+\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+.....$



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...