Monday, 14 March 2016

trigonometry - Clarification regarding a question



In the question in the link is it compulsory that A+B+C=π ?




https://math.stackexchange.com/questions/1396857/if-sin-a-sin-bsin-c-cos-acos-bcos-c-0-prove-that-sin-2asin-2bsin-2c-cos


Answer



Here in Problem when x=cos(a)+isin(a), y=cos(b)+isin(b), z=cos(c)+isin(c), x+y+z=0,



we have proved that cosA=sinA=0    (1) (1)cos2A=sin2A=0    (2)



Now from (1),cosA+cosB=cosC and sinA+sinB=sinC



Squaring & adding we get, cos(AB)=12    (3)




Similarly, cos(BC)=12    (4),cos(CA)=12    (5)



(3)AB=2mπ±2π3 where m is any integer



(4)BC=2nπ±2π3 where n is any integer



If we take the opposite signs, AC=AB+BC=2π(mn)
cos(CA)=cos(AC)=cos2π(mn)=1 which contradicts (5)




So, either AB=2mπ+2π3,BC=2nπ+2π3   (6)



Or AB=2mπ2π3,BC=2nπ2π3   (7)



Observe that both(6),(7) satisfy (5)



So, the angles have to differ by \dfrac{2\pi}3\pmod{2\pi} which is the sufficient condition for (1) which always implies (2)


No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...