Evaluate:
I=1∫0√1+x21+xdx
My try:
Let x=tany then dx=(1+tan2y)dy
As for the integration limits: if x=0 then y=0 and if x=1 then y=π4
So:
I=π4∫01+tan2y(1+tany)cosydy
I=π4∫01cos3y+cos2ysinydy
But I don't know how to continue.
How to find limh→0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment