Saturday, 28 May 2016

calculus - Polygamma function series: $sum_{k=1}^{infty }left(Psi^{(1)}(k)right)^2$



Applying the Copson's inequality, I found:

$$S=\displaystyle\sum_{k=1}^{\infty }\left(\Psi^{(1)}(k)\right)^2\lt\dfrac{2}{3}\pi^2$$ where
$\Psi^{(1)}(k)$ is the polygamma function.
Is it known any sharper bound for the sum $S$?
Thanks.


Answer



The upper bound can be improved using asymptofic series :



enter image description here


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...