Thursday, 26 May 2016

integration - The sum of an infinite series with integral

$1+\dfrac{1}{9}+\dfrac{1}{45}+\dfrac{1}{189}+\dfrac{1}{729}+\dots=\sum\limits_{n=1}^\infty \dfrac{1}{(2n-1)\cdot 3^{n-1}}$




I got:
$\sum\limits_{n=1}^\infty \dfrac{1}{(2n-1)\cdot 3^{n-1}}=\sum\limits_{n=1}^\infty \dfrac{\int\limits_0^1 x^{2n-2}\,dx}{3^{n-1}}=\dots$



And no idea how to impove.



Thx!

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...