Monday, 16 May 2016

integration - Solve $intfrac{e^x.(2-x^2)}{(1-x)sqrt{1-x^2}}dx$


Evaluate the integral $$\int\frac{e^x.(2-x^2)}{(1-x)\sqrt{1-x^2}}dx$$





Set $u=\dfrac{1}{\sqrt{1-x}}\implies du=\dfrac{-dx}{2(1-x)^{3/2}}$
$$
\int\frac{e^x.(2-x^2)}{(1-x)\sqrt{1-x^2}}dx=\int\frac{e^x.(2-x^2)}{(1-x)^{3/2}\sqrt{1+x}}dx=\int\frac{e^x{2-x^2}.-2du}{\sqrt{\dfrac{2t^2-1}{t^2}}}dx
$$

I have no clue about what is the easiest substitution possible inorder to solve the above integral ?



I tried $u=\dfrac{1}{\sqrt{1-x}}$ yet it is becoming more cumbersome I guess.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...