Saturday, 21 May 2016

real analysis - Limit of $limlimits_{n rightarrow infty}(sqrt{x^8+4}-x^4)$

I have to determine the following:



$\lim\limits_{n \rightarrow \infty}(\sqrt{x^8+4}-x^4)$



$\lim\limits_{n \rightarrow \infty}(\sqrt{x^8+4}-x^4)=\lim\limits_{x \rightarrow \infty}(\sqrt{x^8(1+\frac{4}{x^8})}-x^4 = \lim\limits_{x \rightarrow \infty}(x^4\sqrt{1+\frac{4}{x^8}}-x^4 = \lim\limits_{x \rightarrow \infty}(x^4(\sqrt{1+\frac{4}{x^8}}-1)= \infty$




Could somebody please check, if my solution is correct?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...