Prove That : $$ \int_{0}^{\infty} \ln x\left[\ln \left( \dfrac{x+1}{2} \right) - \dfrac{1}{x+1} - \psi \left( \dfrac{x+1}{2} \right) \right] \mathrm{d}x = \dfrac{\ln^2 2}{2}+\ln2\cdot\ln\pi-1 $$
where $\psi(z)$ denotes the Digamma Function.
This integral arose from my attempt to find an alternate solution to Problem 5, i.e,
$$ {\large\int}_0^\infty\frac{\ln\left(x^2+1\right)\,\arctan x}{e^{\pi x}-1}dx=\frac{\ln^22}2+\ln2\cdot\ln\pi-1 $$
Here's my try : We have the identity,
$$ \displaystyle \int_0^\infty \frac{\ln y}{(y+a)^2 + b^2}\,\mathrm{d}y \; = \; \tfrac{1}{2b}\,\tan^{-1}\tfrac{b}{a}\,\ln(a^2+b^2) $$
Since substituting $y \mapsto \dfrac{a^2+b^2}{y}$ gives,
$$\displaystyle \int_0^\infty \frac{\ln y}{(y+a)^2+b^2} \, \mathrm{d}y =\ln(a^2+b^2)\int_0^\infty \frac{dy}{y^2+2ay+a^2+b^2} - \int_0^\infty \frac{\ln y}{(y+a)^2+b^2} \, \mathrm{d}y $$
$$ \implies \displaystyle \int_0^\infty \frac{\ln y}{(y+a)^2 + b^2}\,\mathrm{d}y \; = \; \tfrac{1}{2b}\,\tan^{-1}\tfrac{b}{a}\,\ln(a^2+b^2) $$
Putting $a=1$ and $b=x$, we have,
$ \displaystyle \int_0^\infty \frac{2x \ln y}{(y+1)^2 + x^2}\,\mathrm{d}y \; = \; \,\,\ln(1+x^2) \ \tan^{-1}x \tag{1} $
Now, we have to prove,
$$\displaystyle {\large\int}_0^\infty\frac{\ln\left(x^2+1\right)\,\tan^{-1}x}{e^{\pi x}-1} \mathrm{d}x=\frac{\ln^22}2+\ln2\cdot\ln\pi-1$$
Let,
$$\displaystyle \text{I} = {\large\int}_0^\infty\frac{\ln\left(x^2+1\right)\,\tan^{-1}x}{e^{\pi x}-1} \mathrm{d}x $$
$$\displaystyle = \int_{0}^{\infty} \int_{0}^{\infty} \frac{2x \ln y}{[(y+1)^2 + x^2][e^{\pi x} - 1]} \mathrm{d}x \ \mathrm{d}y \quad (\text{From 1}) \tag{2}$$
The inner integral is of the form,
$$ \displaystyle \text{J} = \int_{0}^{\infty} \dfrac{x}{(x^2+a^2)(e^{\pi x} - 1)} \ \mathrm{d}x \ ; \ a = (y+1)$$
I have proved here that,
$\displaystyle \int_{0}^{\infty} \dfrac{\log(1-e^{-2a\pi x})}{1+x^2} \mathrm{d}x = \pi \left[\dfrac{1}{2} \log (2a\pi ) + a(\log a - 1) - \log(\Gamma(a+1)) \right] \tag{3}$
Differentiating both sides w.r.t. $a$, substituting $ a \mapsto \frac{a}{2} $ and $ x \mapsto \frac{x}{a} $, we get,
$\displaystyle \int_{0}^{\infty} \dfrac{x}{(x^2+a^2)(e^{\pi x} - 1)} \ \mathrm{d}x = \dfrac{1}{2} \left[ \dfrac{1}{a} + \ln \left( \dfrac{a}{2} \right) - \psi \left( \dfrac{a}{2} + 1 \right) \right] \tag{4}$
Putting $(4)$ in $(2)$, we have,
$$ \displaystyle \text{I} = \int_{0}^{\infty} \left[ \dfrac{\ln y}{y+1} + \ln y \ln \left( \dfrac{y+1}{2} \right) - \ln y \ \psi \left( \dfrac{y+1}{2} + 1 \right) \right] \mathrm{d}y $$
$ = \displaystyle \int_{0}^{\infty} \ln x\left[\ln \left( \dfrac{x+1}{2} \right) - \dfrac{1}{x+1} - \psi \left( \dfrac{x+1}{2} \right) \right] \mathrm{d}x \tag{*}$
Since the original question has already been proved in the link, so $(*)$ must be equal to the stated closed form. It also matches numerically.
I'm looking for some method to evaluate $(*)$ independent of Problem 5.
Any help will be greatly appreciated.
Answer
Two Auxiliary Identities
First, we shall establish two simple identities.
$\textbf{Identity }(*)$
$$\int^1_0\left[\frac{1}{\log{x}}+\frac{1}{1-x}\right]x^{s-1}\ dx=\log{s}-\psi_0(s)\tag{*}$$
$\text{Proof Outline: }$ Differentiate with respect to $s$, recognise the integral representation of the trigamma function, then integrate back.
$\textbf{Identity }(**)$ $$\int^\infty_0e^{-ax}\log{x}\
dx=-\frac{\gamma+\log{a}}{a}\tag{**}$$
$\text{Proof Outline: }$ Differentiate the result $\int^\infty_0x^{s-1}e^{-ax}\ dx=a^{-s}\Gamma(s)$ with respect to $s$ and set $s=1$.
The Integral In Question
Applying these two identities and switching the order of integration gives us
\begin{align}
I
&:=\int^\infty_0\log{x}\left[\log\left(\frac{x+1}{2}\right)-\psi_0\left(\frac{x+1}{2}\right)-\frac{1}{x+1}\right]\ dx\\
&=\int^\infty_0\log{x}\int^1_0\left[\frac{1}{\log{t}}+\frac{1}{1-t}-\frac{1}{2}\right]t^{\frac{x-1}{2}}\ dt\ dx\\
&=\int^1_0\frac{1}{\sqrt{t}}\left[\frac{1}{\log{t}}+\frac{1}{1-t}-\frac{1}{2}\right]\int^\infty_0 \exp\left[-\left(-\frac{\log{t}}{2}\right)x\right]\log{x}\ dx\ dt\\
&=2\int^1_0\frac{\gamma+\log\left(-\tfrac{\log{t}}{2}\right)}{\sqrt{t}\log{t}}\left[\frac{1}{\log{t}}+\frac{1}{1-t}-\frac{1}{2}\right]\ dt\\
&=2\int^\infty_0\frac{e^{-u}(\gamma+\log{u})}{u}\left[\frac{1}{2u}-\frac{1}{1-e^{-2u}}+\frac{1}{2}\right]\ du
\end{align}
Let us define
$$I(s)=2\int^\infty_0u^{s-1}e^{-u}(\gamma+\log{u})\left[\frac{1}{2}+\frac{1}{2u}-\frac{1}{1-e^{-2u}}\right]\ du$$
so that $I=I(0)$. We have
\begin{align}
I(s)
&=\color{red}{\gamma\Gamma(s)+\gamma\Gamma(s-1)}+\color{blue}{\Gamma'(s)+\Gamma'(s-1)}-2\sum^\infty_{n=0}\int^\infty_0 u^{s-1}e^{-(2n+1)u}(\gamma+\log{u})\ du\\
&=\color{red}{\frac{\gamma\Gamma(1+s)}{s}\frac{s}{s-1}}\color{blue}{-\frac{s\Gamma(s)\psi_0(s)}{1-s}-\frac{\Gamma(s)}{(1-s)^2}}-2\sum^\infty_{n=0}\frac{\Gamma(s)\left(\gamma+\psi_0(s)-\log(2n+1)\right)}{(2n+1)^s}\\
&=\color{red}{\frac{\gamma\Gamma(1+s)}{s-1}}\color{blue}{-\frac{s\Gamma(s)\psi_0(s)}{1-s}-\frac{\Gamma(s)}{(1-s)^2}}\color{green}{-2(1-2^{-s})\Gamma(s)\zeta(s)(\gamma+\psi_0(s))}\\
&\color{purple}{\ \ \ \ -2\Gamma(s)\frac{d}{ds}(1-2^{-s})\zeta(s)}\\
\end{align}
With the expansions
\begin{align}
\Gamma(s)&\sim_0\frac{1}{s}-\gamma+\mathcal{O}(s)\\
\gamma+\psi_0(s)&\sim_0 -\frac{1}{s}+\mathcal{O}(s)\\
(1-2^{-s})\zeta(s)&\sim_0\left(s\log{2}-\frac{s^2\log^2{2}}{2}+\mathcal{O}(s^3)\right)\left(-\frac{1}{2}-\frac{s\log(2\pi)}{2}+\mathcal{O}(s^2)\right)\\
&\sim_0 -\frac{s\log{2}}{2}-\left(\frac{\log^2{2}}{4}+\frac{\log 2\log{\pi}}{2}\right)s^2+\mathcal{O}(s^3)
\end{align}
we obtain
\begin{align}
I(s)
&\sim_0\color{red}{-\gamma}\color{blue}{-1+\gamma}\color{green}{-\frac{\log{2}}{s}+\gamma\log{2}-\frac{\log^2{2}}{2}-\log{2}\log\pi}+\color{purple}{\frac{\log{2}}{s}-\gamma\log{2}}\\
&\color{purple}{\ \ \ \ \ \ \ +\log^2{2}+2\log{2}\log\pi}+\mathcal{O}(s)\\
&\sim_0 -1+\log{2}\log{\pi}+\frac{\log^2{2}}{2}+\mathcal{O}(s)
\end{align}
as was to be shown.
Note:
One can obtain the values of the derivatives of the zeta function at $0$ by differentiating Riemann's functional equation and using the Laurent series of the zeta function at $1$.
No comments:
Post a Comment