I would like to compute the following limit, limn→∞∫π20(sin(x))n1−sin(x)dx.
I am looking for a high school answer.
I tried writing \lim_{n \to \infty} \int_0^{\frac{\pi}{2}}{\frac{(\sin(x))^{n}}{1-\sin{(x)}}\,\d x = \lim_{n \to \infty} \lim_{ε \to \frac{\pi}{2}}\int_0^ε{\frac{(\sin(x))^n}{1-\sin(x)}}\,\d x},
but it doesn't help me, since 1 - \sin(x) \leq 1, \forall x \in \left[0, \dfrac{\pi}{2}\right].
Answer
Your integral does event convergence, for each n we have \int_0^{\fracπ2}\frac{(\sin x)^n}{1-\sin x}=\infty
In fact Since see here \frac2πx≤\sin x≤x,~~~~~~\forall x \in \left[0, \displaystyle \frac{\pi}{2}\right] we have
\frac{(\frac2πx)^n}{1-\frac2πx}≤\frac{(\sin x)^n}{1-\sin x}≤\frac{x^n}{1-x}\implies \int_0^{\fracπ2}\frac{(\frac2πx)^n}{1-\frac2πx}dx≤\int_0^{\fracπ2}\frac{(\sin x)^n}{1-\sin x}≤\int_0^{\fracπ2}\frac{x^n}{1-x}dx
then let u= \frac2πx the we get
\infty=\int_0^{1}\frac{x^n}{1-x}dx≤\int_0^{\fracπ2}\frac{(\sin x)^n}{1-\sin x}≤\int_0^{1}\frac{x^n}{1-x}dx+\int_1^{\fracπ2}\frac{x^n}{1-x}dx=\infty
No comments:
Post a Comment