Tuesday, 17 May 2016

real analysis - Computing $limlimits_{n to infty} int_0^{frac{pi}{2}}{frac{(sin(x))^{n}}{1-sin{(x)}},mathrm{d}x} $




$\def\d{\mathrm{d}}$I would like to compute the following limit, $$\displaystyle{\lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \frac{(\sin(x))^{n}}{1-\sin{(x)}}\,\d x} .$$




I am looking for a high school answer.



I tried writing $$\lim_{n \to \infty} \int_0^{\frac{\pi}{2}}{\frac{(\sin(x))^{n}}{1-\sin{(x)}}\,\d x = \lim_{n \to \infty} \lim_{ε \to \frac{\pi}{2}}\int_0^ε{\frac{(\sin(x))^n}{1-\sin(x)}}\,\d x},$$




but it doesn't help me, since $1 - \sin(x) \leq 1, \forall x \in \left[0, \dfrac{\pi}{2}\right]$.


Answer




Your integral does event convergence, for each $n$ we have $$ \int_0^{\fracπ2}\frac{(\sin x)^n}{1-\sin x}=\infty$$




In fact Since see here $$\frac2πx≤\sin x≤x,~~~~~~\forall x \in \left[0, \displaystyle \frac{\pi}{2}\right]$$ we have



$$\frac{(\frac2πx)^n}{1-\frac2πx}≤\frac{(\sin x)^n}{1-\sin x}≤\frac{x^n}{1-x}\implies \int_0^{\fracπ2}\frac{(\frac2πx)^n}{1-\frac2πx}dx≤\int_0^{\fracπ2}\frac{(\sin x)^n}{1-\sin x}≤\int_0^{\fracπ2}\frac{x^n}{1-x}dx$$
then let $u= \frac2πx$ the we get




$$\infty=\int_0^{1}\frac{x^n}{1-x}dx≤\int_0^{\fracπ2}\frac{(\sin x)^n}{1-\sin x}≤\int_0^{1}\frac{x^n}{1-x}dx+\int_1^{\fracπ2}\frac{x^n}{1-x}dx=\infty$$



No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...