$\def\d{\mathrm{d}}$I would like to compute the following limit, $$\displaystyle{\lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \frac{(\sin(x))^{n}}{1-\sin{(x)}}\,\d x} .$$
I am looking for a high school answer.
I tried writing $$\lim_{n \to \infty} \int_0^{\frac{\pi}{2}}{\frac{(\sin(x))^{n}}{1-\sin{(x)}}\,\d x = \lim_{n \to \infty} \lim_{ε \to \frac{\pi}{2}}\int_0^ε{\frac{(\sin(x))^n}{1-\sin(x)}}\,\d x},$$
but it doesn't help me, since $1 - \sin(x) \leq 1, \forall x \in \left[0, \dfrac{\pi}{2}\right]$.
Answer
Your integral does event convergence, for each $n$ we have $$ \int_0^{\fracπ2}\frac{(\sin x)^n}{1-\sin x}=\infty$$
In fact Since see here $$\frac2πx≤\sin x≤x,~~~~~~\forall x \in \left[0, \displaystyle \frac{\pi}{2}\right]$$ we have
$$\frac{(\frac2πx)^n}{1-\frac2πx}≤\frac{(\sin x)^n}{1-\sin x}≤\frac{x^n}{1-x}\implies \int_0^{\fracπ2}\frac{(\frac2πx)^n}{1-\frac2πx}dx≤\int_0^{\fracπ2}\frac{(\sin x)^n}{1-\sin x}≤\int_0^{\fracπ2}\frac{x^n}{1-x}dx$$
then let $u= \frac2πx$ the we get
$$\infty=\int_0^{1}\frac{x^n}{1-x}dx≤\int_0^{\fracπ2}\frac{(\sin x)^n}{1-\sin x}≤\int_0^{1}\frac{x^n}{1-x}dx+\int_1^{\fracπ2}\frac{x^n}{1-x}dx=\infty$$
No comments:
Post a Comment