Monday, 5 December 2016

limits - Why doesn't L'hopitals Rule work for $limlimits_{x to infty} frac{x+ sin x}{x+ 2 sin x}$?

This is how I would evaluate $\lim\limits_{x \to \infty} \dfrac{x+ \sin x}{x+ 2 \sin x}$



$=\lim\limits_{x \to \infty} \dfrac{x \left( 1+ \frac{\sin x}{x} \right)}{x \left(1+ 2 \cdot \frac{ \sin x}{x} \right)}$



$= \dfrac{1+0}{1+2 \cdot 0} = 1$



But now applying L'hopitals Rule, I get




$\lim\limits_{x \to \infty} \dfrac{1+ \cos x}{1+ 2 \cos x}$



Since $\cos x $ just oscillates between $[-1,1]$ I think we can conclude the limit doesn't exist.



What is going on here?

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...