Monday, 3 July 2017

real analysis - An improper integral that diverges



I want to show that the integral

\begin{align*}
\int_1^{\infty} \frac{|\sin x|}{x} \text{ d}x
\end{align*}

diverges without sketching the function and obtain the divergence of the integral geometrically. I wonder if the comparison test works here.



I appreciate any help. Thanks.


Answer



Hint: Also used in this answer:
$$
\begin{align}

\int_{k\pi}^{(k+1)\pi}\frac{|\sin(x)\,|}x\,\mathrm{d}x
&\ge\frac1{(k+1)\pi}\int_{k\pi}^{(k+1)\pi}|\sin(x)\,|\,\mathrm{d}x\\
&=\frac2{(k+1)\pi}
\end{align}
$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...