Suppose $f: A\rightarrow B$ is a bijection. For $A,B \subseteq C$. Show that a bijective map $h: C\setminus A \rightarrow C\setminus B$ exists.
I'm not sure how to proceed, may I have a hint please?
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
No comments:
Post a Comment