Sunday, 6 August 2017

trigonometry - Proving A Trigonometric Identity- Double Angles



$(\cos(2x)-\sin(2x))(\sin(2x)+\cos(2x)) = \cos(4x)$ I'm trying to prove that the left side equals the right side. I'm just stuck on which double angle formula of cosine to use.


Answer



$$(\cos(2x)-\sin(2x))(\sin(2x)+\cos(2x))=(\cos^2(2x)-\sin^2(2x)) = \cos(4x)$$
From
$$\cos(a+b)=\cos a \cos b-\sin a\sin b$$ if $a=2x,b=2x$ then

$$\cos(4x)=\cos^22x-\sin^22x$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...