Friday, 29 March 2019

calculus - Are some indefinite integrals impossible to compute or just don't exist?





I've just started working with integrals relatively recently and I am so surprised how much harder they are to compute than derivatives. For example, for something as seemingly simple as $\int e^{ \cos x} dx $ is impossible right? I can't use u-sub since there is no $-\sin(x)$ multiplying the function, also integration by parts seems like it wouldn't work, correct? So does this mean this integral is impossible to compute?


Answer



The indefinite integral of a continuous function always exists. It might not exist in "closed form", i.e. it might not be possible to write it as a finite expression using "well-known" functions. The concept of "closed form" is
somewhat vague, since there's no definite list of which functions are "well-known". A more precise statement is that there are elementary functions whose indefinite integrals are not elementary. For example, the indefinite integral $\int e^{x^2}\; dx$ is not an elementary function, although it can be expressed in terms of a non-elementary special function as $\frac{\sqrt{\pi}}{2} \text{erfi}(x)$.




Your example $\int e^{\cos(x)}\; dx$ is also non-elementary. This can be proven using the Risch algorithm. This one does not seem to have any non-elementary closed form either.


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...