Thursday, 14 March 2019

integration - Integrate intsin4xcos2xdx



Integrate sin4xcos2xdx



Now, there's few solutions to this problem already on the internet. For example on yahoo:
https://answers.yahoo.com/question/index?qid=20090204203206AAbjUfM
and MIT
http://ocw.mit.edu/courses/mathematics/18-01sc-single-variable-calculus-fall-2010/unit-4-techniques-of-integration/part-a-trigonometric-powers-trigonometric-substitution-and-completing-the-square/session-69-integral-of-sin-n-x-cos-m-x-even-exponents/MIT18_01SCF10_ex69sol.pdf




I've tried a slightly different approach and simply wonder if my answer is correct as I don't know how to check it.



sin4xcos2xdx=(1cos2x2)2cos2xdx=14(12cos2x+cos4x)cos2xdx=14cos6x2cos4x+cos2xdx=14(17cos7x25cos5x+13cos3x)+C


Answer




sin4xcos2x=(1cos2x2)21+cos2x2



=(1+cos2x)(12cos2x+cos22x)8



=1cos2xcos22x+cos32x8



Again, cos22x=1+cos4x2



and cos3y=4cos3y3cosy4cos3y=cos3y+3cosy set y=2x







Alternatively use Euler Identities



2cosx=eix+eix,2isinx=eixeix



(2isinx)4(2cos2x)2=(eixeix)4(eix+eix)2



64sin6xcos2x=(eix+eix)2(eix+eix)2(eixeix)2




=(ei2x+ei2x+2)(ei2xei2x)2



=(ei2x+ei2x+2)(ei4x+ei4x2)



=ei6x+ei6x(ei2x+ei2x)+2(ei4x+ei4x)4



=2cos6x(2cos2x)+2(2cos4x)4


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...