Integrate ∫sin4xcos2xdx
Now, there's few solutions to this problem already on the internet. For example on yahoo:
https://answers.yahoo.com/question/index?qid=20090204203206AAbjUfM
and MIT
http://ocw.mit.edu/courses/mathematics/18-01sc-single-variable-calculus-fall-2010/unit-4-techniques-of-integration/part-a-trigonometric-powers-trigonometric-substitution-and-completing-the-square/session-69-integral-of-sin-n-x-cos-m-x-even-exponents/MIT18_01SCF10_ex69sol.pdf
I've tried a slightly different approach and simply wonder if my answer is correct as I don't know how to check it.
∫sin4xcos2xdx=∫(1−cos2x2)2cos2xdx=14∫(1−2cos2x+cos4x)cos2xdx=14∫cos6x−2cos4x+cos2xdx=14(17cos7x−25cos5x+13cos3x)+C
Answer
sin4xcos2x=(1−cos2x2)21+cos2x2
=(1+cos2x)(1−2cos2x+cos22x)8
=1−cos2x−cos22x+cos32x8
Again, cos22x=1+cos4x2
and cos3y=4cos3y−3cosy⟺4cos3y=cos3y+3cosy set y=2x
Alternatively use Euler Identities
2cosx=eix+e−ix,2isinx=eix−e−ix
(2isinx)4(2cos2x)2=(eix−e−ix)4(eix+e−ix)2
⟹64sin6xcos2x=(eix+e−ix)2⋅(eix+e−ix)2(eix−e−ix)2
=(ei2x+e−i2x+2)(ei2x−e−i2x)2
=(ei2x+e−i2x+2)(ei4x+e−i4x−2)
=ei6x+e−i6x−(ei2x+e−i2x)+2(ei4x+e−i4x)−4
=2cos6x−(2cos2x)+2(2cos4x)−4
No comments:
Post a Comment