Saturday, 30 March 2019

number theory - Show that it is impossible that $P(a)=b$, $P(b)=c$, and $P(c)=a$ at the same time.

Let $a, b, c$ be distinct integers, and let $P$ be a polynomial with integer coefficients. Show that it is impossible that $P(a)=b$, $P(b)=c$, and $P(c)=a$ at the same time.

No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...