Please help me to solve this integral:
$$\int_0^\pi\frac{3\cos x+\sqrt{8+\cos^2 x}}{\sin x}x\ \mathrm dx.$$
I managed to calculate an indefinite integral of the left part:
$$\int\frac{\cos x}{\sin x}x\ \mathrm dx=\ x\log(2\sin x)+\frac{1}{2} \Im\ \text{Li}_2(e^{2\ x\ i}),$$
where $\Im\ \text{Li}_2(z)$ denotes the imaginary part of the dilogarithm. The corresponding definite integral $$\int_0^\pi\frac{\cos x}{\sin x}x\ \mathrm dx$$ diverges. So, it looks like in the original integral summands compensate each other's singularities to avoid divergence.
I tried a numerical integration and it looks plausible that
$$\int_0^\pi\frac{3\cos x+\sqrt{8+\cos^2 x}}{\sin x}x\ \mathrm dx\stackrel{?}{=}\pi \log 54,$$
but I have no idea how to prove it.
Answer
Let
$$y=\frac{3\cos x+\sqrt{8+\cos^2 x}}{\sin x},$$
then, solving this with respect to $x$, we get
$$x=\frac{\pi}{2}+\text{arccot}\frac{6y}{8-y^2}.$$
So,
$$\int_0^\pi\frac{3\cos x+\sqrt{8+\cos^2 x}}{\sin x}x\ \mathrm dx=\int_0^\infty\frac{6y(8+y^2)}{(4+y^2)(16+y^2)}\left(\frac{\pi}{2}+\text{arccot}\frac{6y}{8-y^2}\right)\mathrm dy.$$
The latter integral can be solved by Mathematica and yields $$\pi\log54.$$
Of course, we want to prove that the result returned by Mathematica is correct.
The following statement is provably true, that can be checked directly by taking derivatives of both sides:
$$\int\frac{6y(8+y^2)}{(4+y^2)(16+y^2)}\left(\frac{\pi}{2}+\text{arccot}\frac{6y}{8-y^2}\right)\mathrm dy =\\ \frac{1}{2} i \left(2 \text{Li}_2\left(\frac{iy}{8}+\frac{1}{2}\right)+\text{Li}_2\left(\frac{iy}{6}+\frac{1}{3}\right)+2\text{Li}_2\left(\frac{iy}{6}+\frac{2}{3}\right)+\text{Li}_2\left(\frac{iy}{4}+\frac{1}{2}\right)+\text{Li}_2\left(\frac{2i}{y-2 i}\right)-\text{Li}_2\left(-\frac{2 i}{y+2i}\right)-\text{Li}_2\left(-\frac{1}{6} i (y+2i)\right)-\text{Li}_2\left(-\frac{1}{4} i (y+2i)\right)-2 \left(-\text{Li}_2\left(-\frac{2i}{y-4 i}\right)+\text{Li}_2\left(\frac{2 i}{y+4i}\right)+\text{Li}_2\left(-\frac{1}{8} i (y+4i)\right)+\text{Li}_2\left(-\frac{1}{6} i (y+4i)\right)\right)\right)+\pi \left(\frac{1}{2}\log \left(3 \left(y^2+4\right)\right)+\log\left(\frac{3}{64}\left(y^2+16\right)\right)\right)+\log \left(4\left(y^2+4\right)\right) \arctan\left(\frac{y}{4}\right)-\left(\log576-2\log \left(y^2+16\right)\right) \arctan\left(\frac{4}{y}\right)+\log\left(y^2+4\right) \text{arccot}\left(\frac{6y}{8-y^2}\right)-\arctan\left(\frac{2}{y}\right)\log12 +\arctan\left(\frac{y}{2}\right)\log2$$
The remaining part is to calculate $\lim\limits_{y\to0}$ and $\lim\limits_{y\to\infty}$ of this expression, which I haven't done manually yet, but it looks like a doable task.
No comments:
Post a Comment