Wednesday, 20 March 2019

combinatorics - Prove that sumlimitsni=12ibinom2nni=nbinom2nn



Let n be a positive integer.





Prove that ni=12i(2nni)=n(2nn)



Answer



Here’s an alternative that requires a little less of a leap to get started, but a little more algebra later. Instead of pulling 2i=(n+i)(ni) out of thin air, substitute k=ni:



ni=02i(2nni)=n1k=02(nk)(2nk)=2nn1k=0(2nk)2n1k=0k(2nk)=2nn1k=0(2nk)4nn1k=1(2n1k1)=2n(n1k=0(2nk)2n2k=0(2n1k))=2n(n1k=0(2nk)n2k=0((2n1k)+(2n12n1k)))=2n(n1k=0(2nk)n2k=0(2n1k)2n1k=n+1(2n1k))=2n(n1k=0(2nk)(22n1(2n1n1)(2n1n)))=2n(n1k=0(2nk)22n1+(2nn))=n(2n1k=0(2nk)22n+2(2nn))=n(22n(2nn)22n+2(2nn))=n(2nn).




I still haven’t found a combinatorial argument, though.


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find lim without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...