Wednesday, 27 March 2019

measure theory - Show that fn1An convergences in mean




Consider the measurable space (Ω,A,μ). Let f,f1,f2, be measurable functions on that measurable space and A,A1,A2,A. Let (fn) converge in mean to f and 1An to 1A in measure. Show that then fn1An converges in mean to f1A.





Hello and good evening!



My idea is to show instead that (fn1An)nN converges to f1A in measure and that (fn1An)nN is uniformly integrable (because this together is equivalent to the convergence in mean of (fn1An)nN to f1A).



I. Uniformly integrability




Consider any ε>0. (fn)nN is uniformly integrable (and converges to f in measure what is needed below). So there exists an integrable function h0, so that
sup
For this function h, it is
(\lvert 1_{A_n}f_n\rvert-h)^+\leq 1_{\lvert 1_{A_n}f_n\rvert\geq h}\lvert 1_{A_n}f_n\rvert\leq 1_{\lvert f_n\rvert\geq h}\lvert f_n\rvert.
So it follows that

\int (\lvert 1_{A_n}f_n\rvert-h)^+\, d\mu\leq\int 1_{\lvert f_n\rvert\geq h}\lvert f_n\rvert\, d\mu\leq\sup_{f_n\in (f_n)_{n\in\mathbb{N}}}\int 1_{\lvert f_n\rvert\geq h}\lvert f_n\rvert\, d\mu<\varepsilon
what means that
\sup_{1_{A_n}f_n\in (1_{A_n}f_n)_{n\in\mathbb{N}}}\int (\lvert 1_{A_n}f_n\rvert-h)^+\, d\mu<\varepsilon.
So (1_{A_n}f_n)_{n\in\mathbb{N}} is uniformly integrable.



II. Convergence in measure




Consider any \varepsilon>0. It is
\left\{\omega\in\Omega:\lvert 1_{A_n}f_n-1_Af\rvert>\varepsilon\right\}\\=\left\{\omega\in\Omega:\lvert 1_{A_n}f_n-1_{A_n}f+1_{A_n}f-1_Af\rvert>\varepsilon\right\}\\\subset \left\{\omega\in\Omega:\lvert 1_{A_n}f_n-1_{A_n}f\rvert+\lvert 1_{A_n}f-1_Af\rvert>\varepsilon\right\}\\\subset\left\{\omega\in\Omega:\lvert 1_{A_n}f_n-1_{A_n}f\rvert>\frac{\varepsilon}{2}\right\}\cup\left\{\omega\in\Omega:\lvert 1_{A_n}f-1_Af\rvert>\frac{\varepsilon}{2}\right\}\\=\left\{\omega\in\Omega:\lvert 1_{A_n}(f_n-f)\rvert>\frac{\varepsilon}{2}\right\}\cup\left\{\omega\in\Omega:\lvert f(1_{A_n}-1_A)\rvert>\frac{\varepsilon}{2}\right\}\\\subset\left\{\omega\in\Omega:\lvert f_n-f\rvert>\frac{\varepsilon}{2}\right\}\cup\underbrace{\left\{\omega\in\Omega:\lvert 1_{A_n}-1_A\rvert=1\right\}}_{=\left\{\omega\in\Omega:\lvert 1_{A_n}-1_A\rvert>\lambda\right\}\text{ for a }0<\lambda<1}.
So it is
\mu(\left\{\omega\in\Omega:\lvert 1_{A_n}f_n-1_Af\rvert>\varepsilon\right\})\leq\mu(\left\{\omega\in\Omega:\lvert f_n-f\rvert>\frac{\varepsilon}{2}\right\}\cup\left\{\omega\in\Omega:\lvert 1_{A_n}-1_A\rvert>\lambda\right\})\\\leq\underbrace{\mu(\left\{\omega\in\Omega:\lvert f_n-f\rvert>\frac{\varepsilon}{2}\right\})}_{\to 0}+\underbrace{\mu(\left\{\omega\in\Omega:\lvert 1_{A_n}-1_A\rvert>\lambda\right\})}_{\to 0}\to 0
\Longrightarrow \mu(\left\{\omega\in\Omega:\lvert 1_{A_n}f_n-1_Af\rvert>\varepsilon\right\})\to 0



From I. and II. it follows that (1_{A_n}f_n)_{n\in\mathbb{N}} converges to 1_Af in mean.



Could you pls say me if my proof is allright?



With best wishes for X-mas,



math12

No comments:

Post a Comment

real analysis - How to find lim_{hrightarrow 0}frac{sin(ha)}{h}

How to find \lim_{h\rightarrow 0}\frac{\sin(ha)}{h} without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...