Friday, 1 March 2019

sequences and series - Find sum of $1 + cos theta + frac{1}{2!}cos 2theta + cdots$



Find the sum of following series:



$$1 + \cos \theta + \frac{1}{2!}\cos 2\theta + \cdots$$



where $\theta \in \mathbb R$.



My attempt: I need hint to start.



Answer



Hint:
$$
1+\cos x + \frac{1}{2!}\cos 2x + \ldots = \Re(e^{0ix} + e^{1ix} + \frac{1}{2!}e^{2ix} + \ldots)=\Re e^{e^{ix}}
$$



$$
e^{ix}=\cos x+i\sin x\\\Longrightarrow e^{e^{ix}} = e^{\cos x}e^{i\sin x}=e^{\cos x}(\cos(\sin x)+i\sin(\sin x))
$$
Your sum is

$$
e^{\cos x}\cos(\sin x)
$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...