Tuesday, 19 March 2019

real analysis - Sum the series: $1+frac{1+3}{2!}+frac{1+3+3^2}{3!}+cdots$



We have the series$$1+\frac{1+3}{2!}+\frac{1+3+3^2}{3!}+\cdots$$How can we find the sum$?$



MY TRY: $n$th term of the series i.e $T_n=\frac{3^0+3^1+3^2+\cdots+3^n}{(n+1)!}$. I don't know how to proceed further. Thank you.


Answer



The numerator is a geometric sum that evaluates to,



$$\frac{3^{n+1}-1}{3-1}$$




Hence what we have is,



$$\frac{1}{2} \sum_{n=0}^{\infty} \frac{(3^{n+1}-1)}{(n+1)!}$$



$$=\frac{1}{2} \sum_{n=1}^{\infty} \frac{3^n-1}{n!}$$



$$=\frac{1}{2} \left( \sum_{n=1}^{\infty} \frac{3^n}{n!}- \sum_{n=1}^{\infty} \frac{1^n}{n!} \right)$$



Recognizing the Taylor series of $e^x$ we have




$$=\frac{1}{2}((e^3-1)-(e-1))$$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...