Saturday, 23 March 2019

calculus - How to evaluate the infinite series: $ frac 1 {3cdot6} + frac 1 {3cdot6cdot9} +frac 1 {3cdot6cdot9cdot12}+ldots$



The infinite series is given by:



$$ \dfrac 1 {3\cdot6} + \dfrac 1 {3\cdot6\cdot9} +\dfrac 1 {3\cdot6\cdot9\cdot12}+\ldots$$



What I thought of doing was to split the general term as:




$$\begin{align}
t_r &= \dfrac 1 {3^{r+1}(r+1)!}\\\\
&= \dfrac {r+1 - r} {3^{r+1}(r+1)!}\\\\
&= \dfrac {1} {3^{r+1}\cdot r!} - \dfrac{r}{3^{r+1}(r+1)!}
\end{align}$$



But this doesn't seem to help.



HINTS?


Answer




HINT:



$$e^x=\sum_{0\le r<\infty}\frac{x^r}{r!}$$



Can you take it from here?



A strongly resembling sequence $$-\ln(1-x)=\sum_{1\le r<\infty}\frac{x^r}{r}$$ for $-1\le x<1$


No comments:

Post a Comment

real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$

How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...