I want to know if this integral converges or not : $\int _{1}^{\infty }\!{\frac {\sin \left( \cos \left( x \right) +\sin\left( x\sqrt {3} \right) \right) }{x}}{dx}.$ I tried to integrate by parts or to use dirichlet's test, but it seems impossible to prove that $\int _{1}^{x}\!\sin \left( \cos \left( t \right) +\sin \left( t\sqrt {3} \right) \right) {dt}$ is bounded. Do you have any idea how to solve this problem?
Subscribe to:
Post Comments (Atom)
real analysis - How to find $lim_{hrightarrow 0}frac{sin(ha)}{h}$
How to find $\lim_{h\rightarrow 0}\frac{\sin(ha)}{h}$ without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...
-
Self-studying some properties of the exponential-function I came to the question of ways to assign a value to the divergent sum $$s=\sum_{k=...
-
Ok, according to some notes I have, the following is true for a random variable $X$ that can only take on positive values, i.e $P(X<0=0)$...
-
Make a bijection that shows $|\mathbb C| = |\mathbb R| $ First I thought of dividing the complex numbers in the real parts and the c...
No comments:
Post a Comment