Thursday, 7 March 2019

sequences and series - Proof of the formula 1+x+x2+x3+cdots+xn=fracxn+11x1











Proof to the formula

1+x+x2+x3++xn=xn+11x1.


Answer



Let S=1+x+x2+...+xn. Then, xS=x+x2+...+xn+1=1+x+x2+...+xn+(xn+11)=S+xn+11. So, xSS=xn+11. So, S=xn+11x1. (The exponent of the x in the numerator of the RHS should be n+1 not n).


No comments:

Post a Comment

real analysis - How to find limhrightarrow0fracsin(ha)h

How to find limh0sin(ha)h without lhopital rule? I know when I use lhopital I easy get $$ \lim_{h\rightarrow 0}...