How to evaluate integral ∫∞0cos(2x+1)3√xdx? I tried substitution x=u3 and I got 3∫∞0ucos(2u3+1)du. After that I tried to use integration by parts but I don't know the integral ∫cos(2u3+1)du. Any idea? Thanks in advance.
Answer
I=Γ(23)cos(1+π3)22/3≈−0.391190966503539⋯
∫∞0cos(2x+1)x1/3dx=∫∞0cos(2x+1)Γ(13)∫∞0t−2/3e−xt dt dx=1Γ(13)∫∞0t−2/3∫∞0e−xtcos(2x+1) dx dt=cos(1)Γ(13)∫∞0t1/3t2+4dt−2sin(1)Γ(13)∫∞0t−2/3t2+4dt=cos(1)22/3Γ(13)∫∞0t1/31+t2dt−sin(1)22/3Γ(13)∫∞0t−2/31+t2dt=cos(1)25/3Γ(13)∫∞0t−1/31+tdt−sin(1)25/3Γ(13)∫∞0t−5/61+tdt=π(cos(1)−√3sin(1))22/3Γ(13)√3=2πcos(1+π3)22/32πΓ(23)√3√3=Γ(23)cos(1+π3)22/3
Explanation:
(1): 1xn=1Γ(n)∫∞0tn−1e−xtdt
(2): cos(a+b)=cos(a)cos(b)−sin(a)sin(b)
(2): ∫∞0e−axsin(bx)dx=ba2+b2
(2): ∫∞0e−axcos(bx)dx=aa2+b2
(3): t↦2t
(4): t↦√t
(5): ∫∞0xp−11+xdx=πcsc(pπ)
(6): Γ(z)=πcsc(πz)Γ(1−z), acosx−bsinx=√a2+b2cos(x+arctanba)
No comments:
Post a Comment